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THEORY OF RADIATION GENERATED BY CHARGED

PARTICLES PASSING THROUGH CONTINIOUS PERIODIC MEDIUM

G.M. Garibian

and Yang Chi

I. Introduction

The dynamic phenomena arising during the diffraction of /3"

free x-rays in monocrystals (see, for example, [1] are

well known. Similar phenomena may occur also for x-ray 'transition

radiation, formed when ultrarelativistic charged particles pass

through a crystal [2]. Physically, these phenomena are caused

by the dynamic interaction of Bragg reflected and forward waves,

and in principle they must occur each time that a wave is pro-

pagated in a sufficiently ideal periodic medium, with periods which

are comparable with the wavelength. In particular, dynamic

phenomena may occur in the long-wave regions of electromagnetic

waves -- for example, in the sub-millimeter or infrared region.

It is characteristic that in each case the medium has an average

dielectric constant which differs from unity, or is basically

greater than unity.

On the other hand, a study of a charged particle in a medium

with continuous and periodically changing density was studied in

[3-6]. In contrast to the similar problem in a system of plates

which are regularly spaced with density which changes abruptly,

when the solution of the problem may be obtained exactly (see,

for example [7-9]), in the case of a continuous periodic medium

a precise solution cannot be obtained. /4

*Numbers in the margin indicate pagination in the original foreign

text.
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This is due to the fact that in the latter case the problem

is physically more general, and therefore the nonhomogeneous Hill

equation arises of arbitrary form, whose explicit solution may

be approximately given only when the medium density changes,

slightly. Thus, usually [3-6] the solution of the Hill equation

is used as the zero approximation of the perturbation theory

which corresponds to a forward wave in a medium, with allowance

for the average value of the dielectric constant, whereas all

the remaining waves are assumed to be small.

However, when the conditions of Bragg reflection are satis-

fied, a reflected wave will be of the same order, generally

speaking, as a forward wave. Therefore, in this case the pertur-

bation theory must be changed, so that both of these waves are

considered in the zero approximation.

The present article examines the problem of charge emission.

in a continuous periodic medium by means of this changed pertur-

bation theory. In the limiting cases, when emission frequency

is far from a Bragg frequency, the formulas obtained change into

the corresponding formulas of the regular perturbation theory.

In addition, close to the Bragg frequencies the formulas obtained

differ greatly from the well known formulas.

In particular, as a result of the dynamic interaction of a

Bragg reflected and forward wave of coherently increased transi-

tional emission fQrmed by rigorously periodic inhomogeneities,

close to the Bragg frequency very intense radiation arises. This

radiation is almost monochromatic and is propagated both forward

in the direction of the charge motion, and backwards at a very /5

small angle to the charge trajectory. The strength of this

radiation at the spectral maxima.not only greatly exceeds the

strength of the transitional radiation in a periodic medium far

from Bragg frequencies, which is produced invordinary perturbation
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theory [3-6], but also may be greater than the strength of

Cherenkov radiation/at the same frequencies (if the latter occurs).

In addition, this article also examines the case when a

periodic medium has a finite length. Then, in addition to the

radiation which is formed within the periodic medium, which

emerges from it and is refracted, transitional radiation arises

which is produced at the boundaries of the periodic medium and

a vacuum.

The article [10] made the first experimental study of

radiation of relativistic electron clusters in a waveguide with

regularly spaced plate'q with a density which changes abruptly.

II. General equations for an infinite periodic medium

Let us assume that a rapid charged particle with a charge

g. moves uniformly along the z axis at the speed v in a medium

whose dielectric constant is a periodic function of z with the

period , :

where +( d)z ca) and (eud )do , o:i.e., so is the average dielectric

constant of the medium.

If we represent the vectors of the electromagnetic fields

in the form of Fourier integrals /6

C we F0loigfo e M

then we obtain the following from the Maxwell equation.[5 i

-) - "-

3T6 iv~



The function Y(z) is connected with the Fourier components of

the electromagnetic field vectors as follows

/ w " - de dYc'i_ (4)

where Jo(x) and Ji(x) are Bessel functions of zero and first

orders, X, p are the transverse components of the wave vector

X and the radius vector ., respectively. We shall perform cal-

culations for w>0, keeping the fact in mind that for w<0 the

expressions for the field are obtained as complex conjugates.

Let us expand the function ,T(s) in Fourier series

(5)

We shall assume that the series (5) may be differentiated twice

term by term. It is convenient to distinguish between two cases:

(A) when the number of the Fourier amplitudes is infinite, they /7

decrease monotonically with an increase in the number Inj more

slowly than n-3; (B) when the number of the Fourier amplitudes

a. is finite, and their valueis arbitrary. In the case of a

periodic medium consisting of plates, the corresponding Fourier

series does not satisfy all conditions of case (A) namely,

the Fourier amplitudes decrease as I/n. Nevertheless, as will

be shown below, in case (A) the basic properties of the phenomenon

occurring in a stack of plates [11] are qualitatively retained.

Substituting (1) and (5) in Equation (3), and introducing :

the dimensionless variable ,=Tv/?. , we obtain

O(6)
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where and

A--

The Fourier coefficients 0,, and M are unequivocally

determined when Equation (6) is derived. This equation is a non-

homogeneous Hill equation. Following the general theory given

in [12], we may formally write its solution. However, to obtain

the explicit form of the solution, we shall assume [12] that

the deviations of the medium from a homogeneous medium are small,

i.e., 4 j; . Then, within an accuracy of terms of a higher

order of smallness, we have

f ier,' . c " . ..
- - (8)

S_ - z,) a, (n o)

2-r cnu "vn

If the linearly independent solutions r ,) and _;,c5) of the

homogeneous Hill equation (6) are known, then the solution of the.

non-homogeneous equation may be written in the form

where

1". -&



In order to determine the constants Al, A2 we shall use the

condition that the solution of Equation (6) is periodic. (See

We thus obtain

' i- V.&r ei(,- (11)

where c(irt) and .priir) are constants which, according to

the Floquet theorem, occur before the solutions of the homo-

geneous Hill equation 3) and when the arguments shift

by the period

III. Solution of the homogeneous equation

According to the general solution of the homogeneous Hill

equation, we assume

(12)

Substituting (12) in the homogeneous equation which corresponds

to Equation (6), we obtain the recurrence-relationsh-ips

where the prime over the sum sign means that a term with m = o

must be omitted during the summation. These relationships give

an infinite system of equations for determining the quantities

C2n , which are still unknown and which are Fourier coefficients

of the solution (12) of the homogeneous Hill equation.

The coefficients 0,,.cCm) contain a small parameter q, and

the series Ee must be converging due to the assumption

that the series (5) can be differentiated twice. It may be seen

from Equation (13) that small coefficients occur before



all C .;, whereas the coefficient ' - ,.~ occurs before C2n'

If the latter quantity is not small for a single value of the whole

number, n, then the system of Equation (13) has only a trivial

solution. This system of equations may have a non-trivial solution

only when 9,-r~t o for a certain whole number n. Since .r

is determined within an accuracy of an arbitrary odd number,

without disturbing the generality, we may assume In o in the '"

last condition. Thus, the system of Equations (13) may have a

non-trivial solution if - .

If the quantity 7- is not close to a whole number, then the

quantities .- ( a cannot be small for an arbitrary whole

number eo . Then it follows Equation (13) that in this case / 10

all the coefficients C, (n o) are much less than Co . Physically,

this corresponds to the situation when the condition of Bragg

reflection is not satisfied, and only one forwardfave6J is the

main 1wave.

Let us now assume the quantity ry is close to the whole

number h >0. In the mathematical literature, this case has not

been analyzed. (See C12J; the necessity of a special examina-

tion in this case was also indicated in [5]). Then among C,,omoo).
one coefficient, namely 'C.',Iwill be of the same order as Co ,

and the others remain small. Actually, relationship (13)

assumes the following form in the case [ = -h

Since (iC=~- , then -- , and it thus follows that

C-2h and Co may be of the same order. Physically, this means

that Bragg reflection occurs, and the reflected wave C-2h

plays an important role along with the forward wave C



Keeping these statements in mind, we must retain the following

two equations from System 13 as the zero approximation:

O19.,o 0 0 [-(C-2)z = o

In order that Equation r(i4) have a non-trivial solution, it

is necessary to require that the determinant of the system equal

zero, i.e.,

[.-'][,- ., o (15)

The relationship obtained is an approximate characteristic

equation for determining r , when the quantity - .. is

close to the whole number h, which does not equal zero.

To solve Equation (15) we assume

i e=- .i (16)

where 3alI_ ISi. hen for T'6 we obtained the two

values

I
d

We thus have

(18)

Substituting I;~, in (12) instead oft , and taking

into account (18), we obtain two linearly independent solutions

of the zero approximation of the homogeneous Hill equation.
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Only two of the main terms Co and C_ 2 h were taken as the

zero approximation from the entire sum (12). To obtain the sub-

sequent approximation, it is necessary to take into account the

contribution of the remaining terms C2nto the solution. They may

be determined by means of (13) in which it is sufficient to

retfahi-the two main components, m = n and n + h which correspondi

t C an Cd 2 h'inthe summation over m. As.a.result, we obtain

'e,,,e,, +(,.,-a)8,,, (20)

where the double primes over the summation sign indicate /1

that we must omit terms with n = 6 and -h. during the summation.

It may be readily seen that far from the Bragg frequencies

when 1 e,,,j and e., , Formula 20, changes into the expression

02- e (21)

the pn( )Ue p(-2imi

These formulas give the solution of the homogeneous equation for

the problem being investigated, obtained as the first approxi-

mation of ordinary perturbation theory.

IV. Solution of the non-homogeneous equation

Having the solution of the homogeneous equation, using

Formulas (9)-- (11) we may write the solution of the non-homo-

geneous equation. Utilizing formula (20) after the appropriate

computations we have

7 Yi (22)

9



where NY" is obtained by means of the formula of the zero

approximation (19) and

.,(6 -A- -c4 (23)
+=, ey MC 6 + eA'Cd j .

Here %.= The quantity AY occurs when taking into

account corrections of the first approximation given in Formula

20, and has the form

- +oe, [ a -- I+) ,,_. .X . .-e,;. * +(A-i,(.,.,4 .,O . : . 'ai " g-:"

-,,r, + (4,,. -, '2 Mk) + a)

Let us first examine the limiting case of a homogeneous / 13

medium when. q - o. Then according to (8) the quantities ~a*':

and M,. equal zero in the case ,o . As a result we obtain

wara e cfi) / -E/e. (25)

Let us substitute this expression in (4) and let us integrate

over .;, using the following formulas (see, for example, [13]).

I, - =K-ia9 *.. (26)

where K )'.4gthe modified Hankel function of zero and first orders,

and Im> o-:. As a result of integration, we obtain,.f or example

10(27)

10



For a large absolute value of the argument, we have K4,(,=0 -.
S. When .>i , the field of the charge like the

function 'p does not decrease exponentially, at large distances

(in a transparent medium), which, as is known, corresponds to the

formation of Cherenkov radiation.

When calculating integrals (4) using expressions (22) -
(24), we must expand the latter into the simplest fractions of

the type (25) with .denominators containing c . The variable

xl is only included by means of the quantities a and ' ,

in expressions (23) and (24). The quantity i1 in its turn is

expressed by means of a according to formula (17), whereas from

(8) and (16) we have

W2, "LE.& -A&z. (28)

Taking these considerations into account, we may see that

expressions (23) and (24) may be expanded into the simplest

fractions with denominators of four types, i t. ~) I and a*iO.) ,
where

" ,o')--- ,. )"- e, .,11 1I /(29)

where n is a corresponding whole number. For (Yb we have

Cf. (A) a+.f.R) a- C. (A

(4) 4.0O- a . d-A) A



Far from the Bragg frequencies, when .IalI19a and 10-iacl L.

the solution y derived above of the non-homogeneous equation

changes, as it must, into the corresponding solution obtained by

means of oirdinary perturbation theory [3].

However, it must be emphasized that all of the formulas ob-

tained are applicable under the conditions lait V" and jl&l .

If these conditions are not satisfied, instead of formulas

(17) and (18), we shall have . _,.4 2&A - O*+4'a+c&.

and -Co (St4e - A)/r . The appropriate changes must

be made in the subsequent formulas.

V. Radiation produced within an infinite continuous

periodic medium.

Let us first establish the main contribution made to the

quantity Dy(s ) . For this purpose, in formula (8), instead of

y , we must substitute expression (30) and disregard the

term containing d/d1 . We thus note that the expressions

(23) and consequently (30) and (24) were obtained under the

condition

__A (31)

Condition (31) may be disturbed when integrating over'

in (4). In order to find under what conditions Equation (31)

is not disturbed when integrating over e , we must find what

values of e make the main contribution to the integrals (4).

Since the Bessel functions IJ.(.cxe) fluctuate and decrease for

large values of the argument, the values ofix<1e., make the main

contribution to the integrals (4) where w -. If it is re-

quired that ,.cwc /e , we may then use formula (23) when

calculating the integrals (4), if Yi Ac/c . It may be /16

12



readily seen that this condition may be readily satisfied.

Then condition (31) may be written in form

CT h (32)

which coincides with the;Braggcondition in a medium with an

average 'dielectric constant e at an angle of incidence r/t.

Replacing condition( 31) by (32) Imeans that-we-are confining

ourselves to examining radiation emanating at small angles

to be jtirajectory of the charge.

Keeping these statements in mind, after integration over z9',

using formulas (26) we-obtain the following expression'r .

1. +. .I
1. O.,MAC..) +(A i -d.CJM,

I .

where

* ~ .O- ,.,..g,-5 = 4,O-,-)) ,.ci,,, ,

(3

Making similar computations by means of formulas 4), (30) 1

..and (26) we obtain

,_ Ge M1,r~~1 + J.. "

-O (c.a) ( 5) i

13



I ~. .,M,..)-(A( .)1M.. (.)I" (35 Cont'd)

The quantity Hjt ), may be expressed by the formula obtained

from (33) if we introduce the factor ./rtcC' under the summation

sign.

When Cherenkov radiation may'occur in a medium, i.e. when
f t>i and we are not close to the threshold, to the

radiation described by formula (33), we must add the regular

Cherenkov radiation in a medium with an average dielectric con-

stant, which is determined by the formula (25) in the zero

approximation. This is connected with the fact that the trans-

verse component of the wave vector of the Cherenkov radiation

co!e.-i/v far from the threshold is not small, and therefore

ordinary Cherenkov radiation is not encompassed by formula (33)

obtained when the condition (32) is satisfied. It may be seen

from formula (33) that only those components for which the values

of (34) are positive make a contribution to the field at large

distances '. - In addition, it may be seen from_ (33)-that

these components will be larger, the smaller are the values of

(34). Since we are considering the case when the Bragg /1

condition (32) is satisfied, the values of (34) will be small

only if dc.)A . It may be seen from the expressions for

dio,() and 4.3 that this may be done if I./v .. L.

Keeping this in mind, we require that

4(36)

14



where Idl z' , and C , is a positive whole number of the same

parity as h. Substituting (36) in (29) and assuming that

na n.*-n, when n. satisfies the conditions

' . - (37)

gor _ctt) we obtain,

d.CN .)= YdznL)r 00 * (38)

The order of magnitude of the quantity under the root sign

in formula (38) is determined by the first term. Let us compare

the quantities d,(n,) , d,(rti). (,~) . If - is a small number,

then the two quantities d~cn) may always be less than the re-

maining quantities. If AR'4 . then these quantities are small and

of the same order when iml .

It follows from conditions (36) and (32) -- which lead to

amplification of the radiation when they are satisfied - that

the difference between the charge flight.time and the average

propagation time of the radiation during the nonhomogeneous

period of the medium must equal the whole multiple of the

radiation oscillation period.

We should note that if the quantity |l iK . in condition

(36),it follows from formula (38) that 'den)0zid.Pl and formula'

(33) changes into the corresponding formula obtained in ordinary
pertubation theory.

Thus, if h' (and consequently h) is a small number,

i.e., if the wavelength of the radiation is comparable.with the

medium non-homogeneous period, the component with n = no: makes

the basic contribution to formula (33[). .-I a result, we obtain,
for example

15



quences.where,,.t

ion was obtained in . Actually, if we integrate over the

wave vector using formulas (29) from [2, we obtain an

expression which coincides with (39), given in this particular

whLet us now find the strength of radiation arising peruniti - ,/,,~ -8 S.' "-r-,t

thiWe should note that incalcula the particular casof the oyn ultra- vector

passing through a circular region p, if we integrat plane over thendi-

ulwave vetor the using formulas (29) from , we obtain an

216

length of the _raJectory of motion of a charged particle. For

passing through a circular region ' -< i f! in .a plane perpendi-
cular to the ;i axis. (see Figure 1).



Thus r aitj . (,-dr)t0 , where 9-a~(eR/Wi'.) is the, angle,
of radiation. The quantities E,(V,t) and H,(M0*) may be

readily obtained from (30) and (2). When calculating the inte-

gral (41), interference terms occur which contain factors of the

type egi(4-r,) or ejira/a. , which must be omitted.

As a result, we obtained the following for radiation

emanating in the forward direction

;d d e I1i' . Ii * (42)

and the following for radiation emanating backwards

+ +I2) .,.ia "J i " -(43)

It may be seen from formulas (42) and (43) that the radia-

tion strength is determined by the Fourier amplitudes a. .aOL-

and #-aci(h) , independently of the presence or absence of other

amplitudes.

/21
Since we are considering the small numbers h and h',

cases A and B, which were given in Section 2, do not differ in

essence from each other. .We must emphasize that the formulas

are only valid in the vicinity of Bragg frequencies co. .I*e'

'/.4 . and when io

Let us now analyze the expressions obtained for an arbi-

trary value of Eo separately for the cases of when t, differs

significantly from unity (far from the Cherenkov radiation thresh-

old) and when tLt (close to the threshold). This division

17



is due to the fact that in the first case, as was noted above,

Cherenkov radiation is not encompassed by formula (39)Y, whereas'

in the second case. the Cherenkov radiation which is produced

is propagated at a small angle and it automatically is taken

into account by formula (39).

Let us introduce a small deviation of the frequency j =(C- s)

/. Then R',). where

-, (44)

and in addition we have the following from (40)

Let us first examine the first case when 4N.oi . It

may be seen from (32) and (36) that in this case L4' , and

A' corresponds to p.>i , and t C corresponds to <, <t .

With allowance for the absorbing capacity of the medium, i.e.

if we assume 'that ,.=C: te (lielI). from Equation (40) for

?1x , we find that

__7 (46)

./ 22

The denominators 1 in Formulas (42) and (43), have the form

J 4AdL + 9,&,2 0 /E J"/I '.

It may thus be seen that the radiation strength (42) and (43)

reaches a maximum when

18



Expressing d by , and 4 , we find that the maximum

occurs .when

rAt the maximum of the radiation strength (42) and (113) are in-

versely proportional to A'4/E,

Let us determine the ratio of the strength of radiation

emanating forward at the maximum to the strength of Cherenkov

radiation at the same frequency (if the latter occurs). This

ratio has the order of magnitude a

(We assume that 1 L,(L.',j4a1A_-') ). For a sufficiently small

absorption, i.e. if the quantity '.0 is sufficiently small,

this ratio may be on the order of unity and greater.

We may establish the spectr!alwidthof the maximum as that

deviation a3=9-9,, at which Rewt IVS! . It may readily be

seen that A). &'/(ALt- '9): . The radiation angle has the

order k.R .-g , i.e. it is very small for a weakly absorbing

media.

For sufficient large values of 191d., and ~ /' ,

the quantity 'ix; will increase in proportion to 1, and

therefore the strength of the radiation described by formulas

(42) and (43) will be small.

A similar situation occurs close to the Cherenkov thresh- /23

old when P',.~s , i.e. h = h'. The difference lies in the fact

that in this case, close to each Bragg frequency ,i , there is

in all one maximum when

19



The width of the maximum has the order ~E~.' . Far from the

Bragg frequency, the radiation emitted in a forward direction,

just as in the case L*' . rapidly decreases. With respect to

the radiation which is emitted in the backward direction,

above the threshold it changes into ordinary Cherenkov radiation,

and below the threshold it becomes weak.

Thus, analyzing formulas (42) and (43), we find that when a

charged particle passes through a periodic, slightly absorbing

medium, the most interesting occurrence is that close to the

'Bragg frequency, very intense and almost monochromatic radiation

arises, which is propagated both forward and backward with respect

to the direction of the !charge motion.- Apart from this radia-

tion, there is also Cherenkov radiation (if s.,i ) and the

regular weak transitional radiation far from the Bragg frequencies,

which is produced by' the inhomogeneities of the medium and is

described by formulas obtained in the regular pertubation theory

[3-6], which may also be obtained from formula (33) in this

study. The nature of the intense and almost monochromatic

radiation close to the Bragg frequencies is a result of dynamic

interaction between Bragg reflected and forwardiwaves, of coherently

intensified transitional radiation produced by the rigorously

periodic inhomogeneities of the medium. Since the inhomogeneities

of the medium are continuously distributed over the entire tra-

jectory of motion of the charge, the strength of the transitional

radiation is proportional to the length of the trajectory, both /24

close to and far from the Bragg frequencies.

By way of illustration, iFigures 2 and 3 show curves of the

spectral dependence of the number of quanta dN/d? , emitted from

a trajectory one radiation wavelength long. Thus, Figure 2,

pertains to radiation emitted in the forward direction and

figure 3 pertains to radiation emitted in the backward direction.

20



These curves were calculated using formulas (42) and'

(43), in which it is assumed that only the Fourier amplitudes

Oaw.C.1 and 0at differ from zero when =s 5 x. 3 • In addi-

tion, 4' - 2.778. 1:/ ' 310" -3I- /2 = 110'4.. I 0,15 . The numbers

1, 2 and 3 mean that A4 and A10 respectively equal 0.25 and 0.25;
0.45 and 0.05; 0.4995 and 0.0005. The dashed horizontal line

in figure 2 pertains to Cherenkov radiation.

Let us now assume that h and h' are much greater than unity,

i.a, the! radiation wavelength is much less than the medium inhomo-

geneity period.

Let us first consider case A which was pointed out in

section 2. In addition to the terms (39) in formula (33), a

large contribution was also made by terms with! n . n,+n ,

where -. t ..... . and il,,' . Let us write the explicit

form of these terms for the particular case of ultrarelativistic

particles (-pal) and in that frequency region where 14-Li-

*I.lI . In this case, as may be seen from conditions (32)

and (36) .Ak . Due to the fact that'A.. .in formula (38)jwe
may disregard the term Ojee-L , as compared with the term

4'L4(de.2, , excluding certain vue of i , for which

d - - =o1.S Snce d= (- .'-I ~/) , we have

+; in, z(47)

where a n,n ., o and the signs ± correspond to i 1.3 and

1 = 2.4.

We readily see from the expression for , , that

.=3 +d*z, for the first two terms of formula (33) and

.*-ARd for the last two terms. This means that the

21



first two terms correspond to waves which are propagated for-

ward in the direction of motion of the charge, and the last two

terms - in the opposite direction.

Keeping the fact in mind that when ,nL the quantity

.La . L, is much less than M, , we find from formula (33)

that part of the wave PDf,) , which is propagated in the forward

direction, has the form

. M.,, we f ) r %)

where 3 = 1 or 2 depending on whether the quantity d+2n, is

positive or negative, and summation is performed iover the whole
numbers n1  , such that XI >o . It may be readily seen from

formula (47) that independently of the sign of d + 2ni we have

=- l'tU d- " . (49)
If we introduce the angle of radiation !-RcX.je/c; , from
formula (49) we obtain

. 4C o-(L').- (50)

The radiation described by formula (48) is regular

transitional radiation formed by periodic inhomogeneities of the

medium, when the wavelength is much less than the inhomogeneity-

period. Since in this case jal o, I , according to the statements
made at the end of Section 3,this radiation may be calculated / 26
in the "single wave" perfturbati-on theory [3-6] . In particular,

the radiation angles (50) coincides with the angles obtained

in 143, (see.also [14]).

With respect to a wave which is propagated forward, as may

be seen from (33), due to the smallness of G ., and MFA%, ,
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it is very weak in this case.

In Case B, since the Fourier amplitudes A2 n are arbitrary,

we must calculate the radiation by the method given above of the

"two-wave" theory, if the quantity ',0.0 is sufficiently large.

ESee Formulas (33) - (35)].

V. Radiation of a finite periodic medium.

Let us assume a periodic medium is finite and is located,

for example, between the two planes z = 0 and a. t =*N., where

N is a whole number, and there is a vacuum outside of it. The

radiation outside of the periodic medium may be obtained by using

the condition that the fields are continuous at the boundaries

of the medium and the vacuum, and by using the results given

in the preceding section.

For this purpose, we should note that the transverse

component of the field Ef(y )' outside of the periodic medium

may be written in theform

*6- . - -i 7- 1

- *01s t ~(51)

for the regions aio and ,, respectively. Thus G1 and G2

are arbitrary constants, and z /e'- X'  . Within the periodic

medium, the waves obtained in the preceding section must be -- 27

supplemented by the free fields, which arise due to the presence

of the boundaries, and which are caused by the solution of

the homogeneous Hill equation. Taking equations (16).- (18)

into account, these fields may be represented in the form

Er 4 L.S. k 11 [..: (52)
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The arbitrary constants ~ , .... . , are determined from. the match-

ing of the corresponding fields at the boundaries z = 0 and z = 1:

CT C 3, *NOW4 .- .. ,,*, J *o.4 1

4 , - ,*r 4"*4, "i -fa
(53)

Here we have introduced'the notation

eGA ' Ozi (54)

at ..,

With respect to the quantities ql and q2, in the right side of

the equations(53), we may obtain their explicit-form only for the

most interesting case when the radiation wavelength is on the

order of the medium inhomogeneity period: /28

S ' 4(d'-&) M -(-Ad a. a )*M - J-Ld( 4 .0

(ss). (55)

1 "' Ms(-zL- at. Q.,1 ).M 1,..( ~d- . 0.)s IL

Solving the system of equations (53) we may obtain the explicit'

form of the constants

V2CtL -ts-+$ ) tf'-. ) ,

.r . .+ 6
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(56)
Contd

where

61 l',- X ,.-.r,-;,.- (57)

Analyzing Formulas(56),we, find that radiation in a vacuum

represents the superposition of transitional radiation which

arises at the boundaries of the medium and the vacuum and

transitional radiation Which arises at the medium periodic inhomo-

geneities over the entire trajectory of motion of a charged

particle within the medium, as well as Cherenkov radiation (if

it occurs). When the last two types of radiation leave a

periodic medium, they naturally undergo reflection and

refraction, if the average dielectric constant e, of the

medium is not close to unity.

An analysis of the formulas obtained shows that just as

was done in [2] the radiation maxima close to the Bragg fre-

quencies, which were found in the preceding section, only occur

if the medium is sufficiently extended when lJ aL ja.

In this case, these maxima will also exist in a vacuum, both

beyond the periodic medium and before it.

25



N)

.. 'yZ

4,' _ _



I I-

1 4 O -a#/ 0 AM 00'.

27



REFERENCES

1. Zachariasen, W. H. Theory of the Diffraction of X-Rays by
Crystals, N. Y. 1967; B. Batterman, H. Cole. Rev. Mod.
Phys. 36, 681 (1964).

2. Garibyan, G. M. and Yan Shi. ZhETF, 63, 1198, 1972.

3. Bliokh, P. V. Izv. Vuzov, Radiofizika 2, 63, 1959.

4. Ter-Mikayelyan, M. L. DAN SSSR, 134, 318, 1960.

5.. Amatuni, A.Ts. and N. A. Korkhmazyan. Izvestiya AN Arm.
SSR, Seriya Fiz. Mat., 13, No. 5, 55, 1960.

6. Casey, K. F., C. Yeh and Z. A. Kaprielian. Phys. Rev.
140, 8768 (1965).

7. Faynberg, Ya.B. and N. A. Khizhnyak. ZhETF, 32, 883, 1957.

8. Garibyan, G. M. ZhETF, 35, 1435, 1958.

9. Pafomov, V.Ye. and I. M. Frank. YaF, 5, 631, 1967.

10. Laziyev, E. M., G. G. Oksuzyan and V. L. Serov. Radio-
tekhnika i Elektronika, 17, 1335, 1972.

11. Avakyan, A. L., G. M. Garibyan and Yan Shi. Izvestiya AN
Arm. SSR, Fizika, 8, No. 1, 1973.

12. McLaughlin, N. V. Theory and Application of Mathieu
Functions IL, Moscow, 1953; D. C. Kuznetsov. Spetsial'nyye1
funktsi i (Special Functions), Moscow, 1965.1

13. Gradshteyn, I. S. and I. M. Ryzhik. Tablitsy integralov,
summ, ryadov i proizvedeniy (Tables of Integrals, Sums,
Series, and Products). Moscow, 1971.

14. Garibyan, G. M. ZhETF, 60, 39, 1971.

'Translated for Goddard Space Flight Center under contract No. NASw
2483, by SCITRAN, P. O. Box 5456, Santa Barbara, California, 93108.

28


